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Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, 
India 

Received 1 February 1984 

Abstract. A class of time-dependent classical Lagrangians possessing an invariant quadratic 
in momentum is considered from a quantal point of view. Quantum mechanics is introduced 
through the Feynman propagator defined as a path integral involving the classical action. 
It is shown, without carrying out an explicit path integration, that the propagator for such 
a time-dependent system is related to the propagator of an associated time-independent 
problem. The expansion of the propagator in terms of the eigenfunctions of the invariant 
operator is derived and the equivalence of the present theory to that of Lewis and Reisenfeld 
is discussed. Explicit analytic forms of propagators are obtained for some cases to illustrate 
the application of the present approach. 

1. Introduction 

The problem of obtaining exact invariants of motion for certain time-dependent systems 
has received a great deal of attention. Since Lewis (1967, 1968) rederived a previously 
known (Courant and Snyder 1958) quadratic invariant for the variable frequency 
oscillator, considerable progress has been made in deriving similar invariants for more 
general time-dependent systems. This has been achieved by an application of Noether's 
theorem to the underlying Lagrangian (Lutzky 1978,1980, Ray and Reid 1979a, b, c, 1982, 
Reid and Ray 1980, Ray 1981), through group theoretic methods applied to the 
Hamiltonian (Gunther and Leach 1977, Prince and Eliezer 1980), by means of canonical 
transformations (Sarlet 1978, Lewis and Leach 1982) or by a direct approach (Lewis and 
Leach 1982). Apart from their intrinsic mathematical interest, the invariants have evoked 
attention because of their use in discussing several physical problems (Courant and 
Snyder 1958, Colegrave and Abdalla 1981, Lewis and Leach 1983). 

Another important application of invariants is towards solving the time-dependent 
quantum mechanical problems. The first step in this direction was taken by Lewis and 
Riesenfeld (1969) who showed that for a quantal system characterised by a time- 
dependent Hamiltonian k(t) and a Hermitian invariant f ( t )  the general solution of 
the time-dependent Schrodinger equation 

is given by 
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Here +,(q, t )  are the normalised eigenfunctions of the invariant operator: 

fG&, t )  = L G n ( 4 ,  t ) ,  (1.3) 
where the eigenvalues are time independent. The expansion coefficients C, are con- 
stants while the time-dependent phases a,(t) are to be determined from the equation 

h da,(t)/dt=($,)ih d / d t - f i l $ , ) .  (1.4) 

Lewis and Riesenfeld (1969) employed this result to obtain quantal solutions for 
a time-dependent oscillator and a charged particle in a time-varying electromagnetic 
field. Recently, Hartley and Ray (1981, 1982) have applied this technique to derive a 
quantum mechanical superposition law for more generalised time-dependent systems. 

In  this paper, we consider the alternative route from classical to quantum mechanics 
via the Feynman propagator. The propagator requires only the knowledge of the 
classical Lagrangian and has the added advantage that quantum superposition is 
already built into it. The questions that we pose and attempt partially to answer are 
the following. Given a classical Lagrangian that admits an invariant, what form does 
the propagator take? In particular, what is the role played by the invariant in this 
approach to quantisation? Explicit path integral calculations for time-dependent 
problems have shown that propagators admit expansions in terms of the eigenfunctions 
of the invariant operator (Khandekar and Lawande 1975, 1979). Apart from this, it is 
difficult to provide general answers to the above questions. Clearly, the existence of 
an invariant imposes certain conditions on the admissible forms of the potential V(q, t )  
in the Lagrangian and this fact may simplify the derivation of the propagator. 

A great deal of simplification arises if we assume that the form of the invariant is 
quadratic in momentum p.  We show in 8 2, without explicit path integration that in 
this case, the Feynman propagator for the time-dependent problem is related to the 
propagator for an associated time-independent problem. This derivation is more 
general than the short version recently reported (Lawande and Dhara 1983). Further- 
more, the expansion of the propagator in terms of the eigenfunctions of the invariant 
operator and the equivalence of the propagator theory to that of Lewis and Riesenfeld 
is discussed. Examples where our theory leads to exact analytic propagators are 
presented in 0 3. Finally, some concluding remarks are added in 8 4. 

2. Feynman propagator 

2.1. Derivation of the propagator 

The Feynman propagator K ( q “ ,  t “ ;  q’, t ’ )  is the quantum mechanical amplitude for 
finding a particle at the position q” at time t” if the particle had been at q’ at an earlier 
time t ’ .  It is defined as the path integral (Feynman and Hibbs 1965) 

K ( q ” ,  t ” ;  q’, t ’ )  = exp - L d t  9 q ( t ) ,  I ( h  1.’: ) 
where L is the classical Lagrangian 

L(q,  4,  t )  = f4* - V(q,  t )  (2.2) 
while 9 q (  t )  is the usual Feynman path differential measure implying that integrations 
are over all possible particle paths starting at 9( t ‘ )  = q’ and terminating at q( t ” )  = q”. 
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We assume that the system described by (2.2) possesses an invariant which is 
quadratic in the momentum p .  This will be the case (Lewis and Leach 1982) if and 
only if the potential is of the form 

where p(t), a ( t )  and F ( ( q  - a ) / p )  are arbitrary functions of their arguments. Inciden- 
tally, the associated invariant has the form 

P% t )  = i[P(P - & )  - d q  - & ) I 2  + F ( ( q  - . ) / p ) .  (2.4) 

Inserting the potential (2.3) in (2.2) and carrying out some algebra, it is possible 
to rewrite the Lagrangian as 

L = d,yy/dt +Lo. (2.5) 

Here the new Lagrangian Lo has the form 

while ,y is defined as 

where 

W = &p - ap = p2(d/dt)(a/p)  

G = i  ['p2[;(a/p)]'dt. 

It is now clear from 

5,: L d r = (x( t ") - ,y( t ')) + Lo d t 5,: 
(2.9) 

(2.10) 

that the first term on the R H S  of (2.10) will lead to a constant phase factor depending 
on the initial and final positions q' and q" in the path integral expression (2.1). Hence 
the path integration for the original Lagrangian L reduces to a path integration for a 
related Lagrangian Lo. Thus we may write 

K ( q " ,  t " ;  q ' ,  t )  = exp[(i/h)(,y(t")-,y(t'))]Ko, 

where 

KO = \ exp( f 1,:" Lo d t ) 9 q (  t )  

(2.1 1) 

(2.12) 

is the new propagator involving the new Lagrangian Lo. Since a ( ? )  is a given function 
of time it is possible to introduce the new variable 

Q = q - a  (2.13) 

in the path integration of (2.12). This will merely shift the end points from q' to 
Q'= q ' -a '  and 4'' to Q"= q" -  a" (where primes and double primes imply that the 



2426 A K Dhara and S VLawande 

quantities are evaluated at t’ and t“ respectively). Thus 

K O =  exp - L,dr 9Q(t )  I (tl 1 
with 

Next, we introduce a new parameter related to time t by 

~ ( t )  = I f  P - ~ ( s )  d s  

so that the action integral in (2.14) takes the form 

Lo d t  = I ’” Lo dT, 
T’ 

where the new Lagrangian Lo has the form 

(2.14) 

(2.15) 

(2.16) 

Eo= Eo((, d(/d7)=i(d(/dT)2- F ( 0 ,  (2.17) 

where ,$ = Q / p .  It is important to note here that the parameter T would in turn induce 
a transformation in the path differential measure 9Q( t ) .  The required transformation 
of the path differentiable measure as t + T has been considered by Fujiwara (1969) and 
subsequently used by Lawande and Dhara (1983). It has the form 

a()( t )  = (p’p”)”’ ’B((  7) .  (2.18) 

It therefore follows from (2.1 1)-(2.18) that the Feynman propagator takes the form 

K ( 4 ” ,  t ” ;  4, t‘) = ( ~ ‘ p ‘ ’ ) - ” ~  exp[(i/h)[x(t”) - ~ ( t ’ ) ] l ? ~ ( ~ ’ ’ ,  7”; (‘, 7‘) 

where 

( 2 . 1 9 ~ )  

(2.196) 

We have thus shown that the propagator for a time-dependent problem is related to 
the propagator of an associated time-independent problem corresponding to the 
Lagrangian Eo in the new space-time ( 5 , ~ ) .  

We mention here that the above formulation may be easily extended to obtain the 
propagator for a more general Lagrangian 

L = i a ( t ) q ’ -  V(4 ,  t )  

possessing an invariant quadratic in momentum. Physically, a( t )  represents either a 
variable mass (Colegrave and Abdalla 1981, 1982, 1983, Leach 1983) or a frictional 
force depending linearly on velocity (e.g. Khandekar and Lawande 1979). 

2.2. Expansion of the propagator 

Further implications of the result (2.19) derived in 0 2.1 will be clear if we consider 
the role played by the invariant in the propagator theory. The classical Hamiltonian 
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corresponding to the Lagrangian Lo is 

no = 4P: + F(6),  (2.20) 

where pp is the canonical momentum conjugate to the new variable 6. On the other 
hand, it is easy to see that the invariant (2.4) when written in terms of the new variable 
5 = (q  - a ) / p  and T is identical to I%. 

are 
obtained by writing pr = -ih a / a t  in (2.20) 

The corresponding quantum Hamiltonian io and the invariant operator 

io = ( - 4 ~ 2  a2/ae* + ~ ( 6 ) )  = io. 

ih a + n ( t ,  T ) / ~ T =  f l o $ n ( t ,  7 ) .  

(2.2 1) 

The propagator Eo( f‘, 7”; e‘, 7’) then represents the Green function of the Schrodinger 
equation 

(2.22) 

i 0 4 n C S )  = A n 4 n ( t )  (2.23) 

has a complete set of normalised eigenfunctions 4,,(6) corresponding to eigenvalues 
A,,, the propagator Eo has the expansion (Feynman and Hibbs 1965) 

Ko(f“,  7”; e’, 7’) = exp[ -(i/h)A,,(T”- ~’)]+f(t’)4,,(t’’). (2.24) 

Note that the eigenvalues A,, may be both discrete and continuous and equation (2.24) 
implies in general a summation over continuous eigenvalues. Inserting the original 
variables q, t, we see that the propagator (2.19) has the following expansion in terms 
of the eigenfunctions of the invariant operator: 

1 

Hence, if the associated stationary problem 

n 

K ( q ” ,  t ” ;  q’, t ’ )  = ( p ’ p f ’ ) ” ’ ’ [ h ( x ( 1 3 - x ( t ~ ) ) ]  i 

(2.25) 

In order to compare the propagator approach with Lewis and Riesenfeld theory, 
consider the quantal Hamiltonian corresponding to the potential (2.3). If we perform 
a unitary transformation 

(2.26) $L = U$m U = exp{ -(i/hXbq2/2p +(kP - aAq/pl )  

equation (1.3) transforms to 

i’+Kq, t )  = A n J l X q ,  t ) ,  (2.27) 

where 

it= uiu’. (2.28) 

This transformed invyiant i’ when expressed in terms of new variables 6 = (q  - a ) / p  
corresponds t o l o  or Ho defined in (2.21) and the corresponding normalised eigenfunc- 
tions +,,(,$) = J p + L ( q ,  t). Further, employing the unitary transformation, the solution 
of equation (1.4) can be easily obtained: 

a, ( t )=  -l h I’dt($+$) (2.29) 
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which appears naturally in expansion (2.25). It follows that the result expressed in 
(2.25) is thus equivalent to the Lewis and Riesenfeld (1969) theory. It must be remarked 
here, however, that, our present derivation is based on the assumption that the invariant 
is quadratic in momentum while no such assumption is explicit in the Lewis and 
Riesenfeld theory. 

3. Applications 

In this section, we use formula (2.19) to obtain exact propagators for some time- 
dependent systems possessing invariants quadratic in momentum. The most interesting 
example is that of a forced harmonic oscillator with time-dependent frequency n2( t )  
and force function f (  t ) .  Comparing the potential 

(3.1) V ( q ,  t )  = i f i2 ( t )q2  - f ( t ) s  
with the general form (2.3) we may set F = 0. The time-dependent functions p ( t )  and 
a ( t )  are found to obey the equations 

i; + n 2 ( t ) p  = o (3.2) 

di +n2(t)a =f( t ) .  (3.3) 

Since F = 0, the propagator KO(<”, 7”; <’, 7’) takes the form for a free-particle 

Inserting (3.4) in the expression (2.19) and recalling the definition (2.7) of x(r) and 
letting < = ( q  - a ) / p  we may write 

K ( q ” ,  t ” ;  q’, t’) = ( c / 2 ~ i f i ) ” ~  exp[(i/2fi)(aq”’ + bq’2 - 2cq‘q“ + dq” + eq’ +g)], (3.5) 

where the various coefficients are defined as follows 

a = ( p ”  + cp’)/p”, 

b =(-b‘+cp”)/p’, 

C = [p ’p”(T ’ ’ -  T’)]-’, 

d =(2/p”)[ W( t” ) -~ ( (~”p’ -c~’p” ) ] ,  

e = (2/ p‘ ) [  c( a ” p ’  - a ‘p”)  - W( r ’ ) ] ,  

(3.1 I )  

In order to evaluate these coefficients we need to use solutions p and a of equations 
(3.2) and (3.3) respectively. We note that a solution of (3.2) is given by 

= a(t> cos P(t1, (3.12) 

where a( t )  satisfy the equation of Pinney (1950) 

U +n2(t)u = U’/(+’ 

f i  = w / a ’  
and 

(3.13) 

(3.14) 
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with w as a constant. A particular solution of (3.3) reads as 

a(?)=-  H ( s ) s i n 4 ( t , s ) d s .  
w 5 '  

where the abbreviations 

(3.15) 

(3.16) 

H ( s )  =f(s)u(s) (3. t 7) 

are introduced. Inserting the solutions (3.12) and (3.15) in equations (3.6)-(3.11) we 
obtain after some algebra the expressions: 

(3.18) 

(3.19) 

(3.20) 

a = c+'t/urt+(w/u't2) cot 4(tf', t ' ) ,  

b = - c+ ' /U '+ (w /u ' ' )  Cot c$(t", t ' ) ,  

c = w / u t u "  sin d(t" ,  t ' ) ,  

d =  5"' H ( t )  sin $ ( t ,  t ' )  dt, 
U" sin 4(t", t ' )  

L 
e =  J H ( t )  sin + ( t " ,  1 )  dt, 

u 's in  4(t", t ' )  

5,I"dt 5 '  ds H ( t ) H ( s )  sin 4(t", t )  sin 4(s, r ' ) .  
= - w sin 4(t", t ' )  1 '  

(3.21) 

(3.22) 

(3.23) 

Combining these results we arrive at the propagator 

K ( q " ,  t " ;  q ' ,  t ' )  

-L j l l " d r  [ ' d s H ( t ) H ( s )  sin d(t" ,  t )  sin &(s, t ' )  (3.24) 
w 2  1' 

As expected this expression agrees with the one derived by Khandekar and Lawande 
(1979) by an explicit path integration of the time-dependent Lagrangian of the problem. 
Note that the present derivation does not require explicit path integration as the 
auxiliary time-independent problem involves only a free-particle propagator. Further, 
the general expression (3.24) contains the special case of the free and forced oscillator 
with a constant frequency or the free oscillator with a variable frequency. 

As a second example we consider a time-dependent harmonic oscillator with a 
frequency O(t )  acted on by an additional inverse quadratic potential g / q 2  where g is 
constant ( g  > - h 2 / 8 ) .  Comparing 

v(q, t )  = fO'(t)q' + g / q *  (3.25) 
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with the form (2.3) we have 

A K Dhara and S V Lawande 

a =o, J T q )  = g / q 2  

while p ( t )  is a solution of (3.2). According to (2. 
K0(t”, 7 ” ;  (’, r‘) takes the form 

7) and (2. 

(3.26) 

9 6 )  the propagator 

KO((”, 7”; t’, 7‘) = I ex p{ [ -( 1 %  ) 2  - dr}  9((~) ,  (3.27) 
2 d r  

where 5 = q / p .  Writing 

g = ‘h*( -1 2)( Y + t ) ,  y = f( 1 + 8g/h2)1’2, (3.28) 

we see that the propagator of (3.27) resembles the radial propagator of a three- 
dimensional free particle corresponding to an ‘angular momentum’ ( y  - t ) .  The latter 
has been derived by Peak and Inomata (1979) and has the form 

Inserting (3.29) in ( 2 . 1 9 ~ )  we obtain 

K ( q ” ,  t”; q’ ,  t ’ )  = (c/ih)(q’q”)”2 exp[(i/2h)(uq”* + 6q’2)]I,(cq’q”/ih) (3.30) 

where the coefficients a, 6, c are as defined in (3.6)-(3.8). When evaluated using the 
solution (3.12) for p, they are then given by (3.18)-(3.20). It therefore follows that the 
final expression for the propagator has the exact analytical form 

K ( q ” ,  t ” ;  q ‘ ,  t’) 

(3.31) 

derived previously (Khandekar and Lawande 1975) by an explicit path integration 
technique. 

We may remark that apart from the examples considered above, the evaluation of 
the associated propagator KO is far from simple in the general case of arbitrary F. 
Nevertheless, removal of time dependence from the phase factor renders the problem 
time independent. The propagator KO may then be computed by taking a recourse to 
a perturbative analysis (Feynman and Hibbs 1965). Alternatively, one may be able to 
solve the classical equation of motion corresponding to the reduced Lagrangian Lo to 
obtain the classical path. It is then possible to adopt a semi-classical expansion of KO 
involving expansion of the action around the classical path (Dewitt-Morette 1976). 
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The major contribution of this paper is to show, without explicit path integration, that 
for a one-dimensional time-dependent system possessing an invariant quadratic in 
momentum the Feynman propagator is related to a propagator for an associated 
time-independent problem. If the latter propagator is known as in the case of the 
illustrative examples discussed, the former is completely evaluated. The role of the 
invariant and the equivalence of the present theory with that of Lewis and Reisenfeld 
is discussed. It will be interesting to generalise these results to systems possessing 
invariants more general than quadratic in p. 
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